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Abstract

This chapter presents the foundations of nonlinearly constrained optimization, or nonlinear

programming. We emphasize general methods and highlight their key components, such as

approximate subproblem and global convergence mechanism. We summarize convergence

results.
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1 Background and Introduction

Nonlinearly constrained optimization problems (NCOs) are an important class of problems with

a broad range of engineering, scientific, and operational applications. For ease of presentation, we

consider NCOs of the form

minimize
x

f(x) subject to c(x) = 0 and x ≥ 0, (1.1)

where the objective function, f : IRn → IR, and the constraint functions, c : IRn → IRm, are twice

continuously differentiable. We denote the multipliers corresponding to the equality constraints,

c(x) = 0, by y and the multipliers of the inequality constraints, x ≥ 0, by z ≥ 0. An NCOmay also

have unbounded variables, upper bounds, or general range constraints of the form li ≤ ci(x) ≤ ui,

which we omit for the sake of simplicity.

In general, one cannot solve (1.1) directly or explicitly. Instead, an iterative method is used that

solves a sequence of simpler, approximate subproblems to generate a sequence of approximate

solutions, {xk}, starting from an initial guess, x0. Every subproblem may in turn be solved by
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an iterative process. These inner iterations are also referred to as minor iterations. A simplified

algorithmic framework for solving (1.1) is as follows.

Given initial estimate (x0, y0, z0) ∈ IRn+m+n, set k = 0;

while xk is not optimal do

repeat
Approximately solve and refine an approximate subproblem of (1.1) around xk.

until an improved solution estimate xk+1 is found ;

Check whether xk+1 is optimal; set k = k + 1.

end

Algorithm 1: Framework for Nonlinear Optimization Methods

In this paper, we review the basic components of methods for solving NCOs. In particular,

we review the four fundamental components of Algorithm 1: the convergence test that checks for

optimal solutions or detects failure; the approximate subproblem that computes an improved new it-

erate; the globalization strategy that ensures convergence from remote starting points, by indicating

whether a new solution estimate is better than the current estimate; and the globalization mech-

anism that truncates the step computed by the local model to enforce the globalization strategy,

effectively refining the local model.

Algorithms for NCOs are categorized by the choice they implement for each of these funda-

mental components. In the next section, we review the fundamental building blocks of methods

for nonlinearly constrained optimization. Our presentation is implementation-oriented and em-

phasizes the common components of different classes of methods.

Notation. Throughout this paper, we denote iterates by xk, k = 1, 2, . . ., and we use subscripts to

indicate functions evaluated at an iterate, for example, fk = f(xk) and ck = c(xk). We also denote

the gradients by gk = ∇f(xk) and the Jacobian by Ak = ∇c(xk). The Hessian of the Lagrangian is

denoted by Hk.

2 Convergence Test and Termination Conditions

We start by describing the convergence test, a common component among all NCO algorithms.

The convergence test also provides the motivation for the approximate subproblems that are de-

scribed next. The convergence analysis of NCO algorithms typically provides convergence only

to KKT points. A suitable approximate convergence test is thus given by

‖ck‖ ≤ ǫ and ‖gk −Akyk − zk‖ ≤ ǫ and ‖min(xk, zk)‖ ≤ ǫ, (2.1)

where ǫ > 0 is the tolerance and the min in the last expression corresponding to complementary

slackness is taken componentwise.

In practice, it may not be possible to ensure convergence to an approximate KKT point, for

example, if the constraints fail to satisfy a constraint qualification (Mangasarian, 1969, Ch. 7). In
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that case, we replace the second condition by

‖Akyk + zk‖ ≤ ǫ,

which corresponds to a Fritz-John point.

Infeasible Stationary Points. Unless the NCO is convex or some restrictive assumptions are

made, methods cannot guarantee convergence even to a feasible point. Moreover, an NCO may

not even have a feasible point, and we are interested in a (local) certificate of infeasibility. In

this case, neither the approximate subproblem nor the convergence test is adequate to achieve

and detect convergence. A more appropriate convergence test and feasibility subproblem can be

based on the following feasibility problem:

minimize
x

‖c(x)‖ subject to x ≥ 0, (2.2)

which can be formulated as a smooth optimization problem by introducing slack variables. Algo-

rithms for solving (2.2) are analogous to algorithms for NCOs, because the feasibility problem can

be reformulated as a smooth NCO by introducing additional variables. In general, we can replace

this objective by any weighted norm. A suitable convergence test is then

‖Akyk − zk‖ ≤ ǫ and ‖min(xk, zk)‖ ≤ ǫ,

where yk are the multipliers or weights corresponding to the norm used in the objective of (2.2).

For example, if we use the ℓ1 norm, then if [ck]i < 0, [yk]i = −1, if [ck]i > 0, [yk]i = 1, and

−1 ≤ [yk]i ≤ 1 otherwise. The multipliers are readily computed as a by-product of solving the

subproblem.

3 Approximate Subproblem: Improving a Solution Estimate

One key difference among nonlinear optimizationmethods is how the approximate subproblem is

constructed. The goal of the approximate subproblem is to provide a computable step that improves

on the current iterate. We distinguish three broad classes of approximate subproblems: sequential

linear models, sequential quadratic models, and interior-point models. Methods that are based

on the augmented Lagrangian method are more suitably described in the context of globalization

strategies in Section 4.

3.1 Sequential Linear and Quadratic Programming

Sequential linear and quadratic programming methods construct a linear or quadratic approxi-

mation of (1.1) and solve a sequence of such approximations, converging to a stationary point.
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Sequential Quadratic Programming (SQP) Methods. SQP methods successively minimize a

quadratic model, mk(d), subject to a linearization of the constraints about xk (Han, 1977; Pow-

ell, 1978; Boggs and Tolle, 1995) to obtain a displacement d := x− xk.

minimize
d

mk(d) := gTk d+
1

2
dTHkd subject to ck +AT

k d = 0, xk + d ≥ 0, (3.1)

where Hk ≃ ∇2L(xk, yk) approximates the Hessian of the Lagrangian and yk is the multiplier

estimate at iteration k. The new iterate is xk+1 = xk + d, together with the multipliers yk+1 of the

linearized constraints of (3.1). IfHk is not positive definite on the null-space of the active constraint

normals, then the QP is nonconvex, and SQP methods seek a local minimum of (3.1). The solution

of the QP subproblem can become computationally expensive for large-scale problems because the

null-space method for solving QPs requires the factorization of a dense reduced-Hessian matrix.

This bottleneck has led to the development of other methods that use LP solves in the approximate

subproblem, and these approaches are described next.

Sequential Linear Programming (SLP) Methods. SLP methods construct a linear approxima-

tion to (1.1). In general, this LP will be unbounded, and SLP methods require the addition of a

trust region (discussed in more detail in the next section):

minimize
d

mk(d) = gTk d subject to ck +AT
k d = 0, xk + d ≥ 0, and ‖d‖∞ ≤ ∆k, (3.2)

where ∆k > 0 is the trust-region radius. Griffith and Stewart (1961) used this method without a

trust region but with the assumption that the variables are bounded. In general, ∆k → 0 must

converge to zero to ensure convergence. SLP methods can be viewed as steepest descent methods

and typically converge only linearly. If, however there are exactly n active and linearly indepen-

dent constraint normals at the solution, then SLP reduces to Newton’s method for solving a square

system of nonlinear equations and converges superlinearly.

Sequential Linear/Quadratic Programming (SLQP) Methods. SLQP methods combine the ad-

vantages of the SLP method (fast solution of the LP) and SQP methods (fast local convergence) by

adding an equality-constrained QP to the SLP method (Fletcher and de la Maza, 1989; Chin and

Fletcher, 2003; Byrd et al., 2004). SLQPmethods thus solve two subproblems: first, an LP is solved

to obtain a step for the next iteration and also an estimate of the active setAk :=
{

i : [xk]i + d̂i = 0
}

from a solution d̂ of (3.2). This estimate of the active set is then used to construct an equality-

constrained QP (EQP), on the active constraints,

minimize
d

qk(d) = gTk d+
1

2
dTHkd subject to ck +AT

k d = 0, [xk]i + di = 0, ∀i ∈ Ak. (3.3)

If Hk is second-order sufficient (i.e., positive-definite on the null-space of the constraints), then

the solution of (3.3) is equivalent to the following linear system obtained by applying the KKT
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conditions to the EQP:






Hk −Ak −Ik

AT
k 0 0

ITk 0 0







(

x

yA

)

=







−gk +Hkxk

−ck

0






,

where Ik = [ei]i∈Ak
are the normals of the active inequality constraints. By taking a suitable basis

from the LP simplex solve, SLQP methods can ensure that [Ak : Ik] has full rank. Linear solvers

such as MA57 can also detect the inertia; and ifHk is not second-order sufficient, a multiple of the

identity can be added to Hk to ensure descent of the EQP step.

Sequential Quadratic/Quadratic Programming (SQQP)Methods. SQQPmethods have recently

been proposed as SQP types of methods (Gould and Robinson, 2010, 2008). First, a convex QP

model constructed by using a positive-definite Hessian approximation is solved. The solution of

this convex QP is followed by a reduced inequality constrained model or an EQP with the exact

second derivative of the Lagrangian.

Theory of Sequential Linear/Quadratic Programming Methods. If Hk is the exact Hessian of

the Lagrangian and if the Jacobian of the active constraints has full rank, then SQP methods con-

verge quadratically near a minimizer that satisfies a constraint qualification and a second-order

sufficient condition (Boggs and Tolle, 1995). It can also be shown that, under the additional as-

sumption of strict complementarity, all four methods identify the optimal active set in a finite

number of iterations.

The methods described in this section are also often referred to as active-set methods, because

the solution of each LP or QP provides not only a suitable new iterate but also an estimate of the

active set at the solution.

3.2 Interior-Point Methods

Interior-point methods (IPMs) are an alternative approach to active-set methods. Interior-point

methods are a class of perturbed Newtonmethods that postpone the decision of which constraints

are active until the end of the iterative process. The most successful IPMs are primal-dual IPMs,

which can be viewed as Newton’s method applied to the perturbed first-order conditions of (1.1):

0 = Fµ(x, y, z) =







∇f(x)−∇c(x)T y − z

c(x)

Xz − µe






, (3.4)

where µ > 0 is the barrier parameter, X = diag(x) is a diagonal matrix with x along its diagonal,

and e = (1, . . . , 1) is the vector of all ones. Note that, for µ = 0, these conditions are equivalent to

the first-order conditions except for the absence of the nonnegativity constraints x, z ≥ 0.

Interior-point methods start at an “interior” iterate x0, z0 > 0 and generate a sequence of in-

terior iterates xk, zk > 0 by approximately solving the first-order conditions (3.4) for a decreasing
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sequence of barrier parameters. Interior-point methods can be shown to be polynomial-time algo-

rithms for convex NLPs; see, for example, (Nesterov and Nemirovskii, 1994).

Newton’s method applied to the primal-dual system (3.4) around xk gives rise to the approxi-

mate subproblem,






Hk −Ak −I

AT
k 0 0

Zk 0 Xk













∆x

∆y

∆z






= −Fµ(xk, yk, zk), (3.5)

where Hk approximates the Hessian of the Lagrangian, ∇2Lk, and the step (xk+1, yk+1, zk+1) =

(xk, yk, zk) + (αx∆x, αy∆y, αz∆z) is safeguarded to ensure that xk+1, zk+1 > 0 remain strictly pos-

itive. A sketch of IPM is given in Algorithm 2.

Given an initial solution estimate (x0, y0, z0), such that (x0, z0) > 0.

Choose a barrier parameter µ0, 0 < σ < 1, and a sequence ǫk ց 0.

repeat
Set (xk,0, yk,0, zk,0) = (xk, yk, zk), l = 0.

repeat
Approximately solve the Newton system (3.5) for a new iterate (xk,l+1, yk,l+1, zk,l+1).

Set l = l + 1.
until ‖Fµk

(xk,l, yk,l, zk,l)‖ ≤ ǫk ;

Reduce the barrier parameter µk+1 = σµk, and set k = k + 1.

until xk, yk, zk optimal ;

Algorithm 2: Primal-Dual Interior-Point Method.

Relationship to Barrier Methods. Primal-dual interior-point methods are related to earlier bar-

rier methods (Fiacco and McCormick, 1990). These methods were given much attention in the

1960s but soon lost favor because of the ill-conditioning of the Hessian. They regained attention

in the 1980s after it was shown that these methods can provide polynomial-time algorithms for

linear programming problems. See the surveys (Wright, 1992; Forsgren et al., 2002; Nemirovski

and Todd, 2008) for further material. Barrier methods approximately solve a sequence of barrier

problems,

minimize
x

f(x)− µ
n
∑

i=1

log(xi) subject to c(x) = 0, (3.6)

for a decreasing sequence of barrier parameters µ > 0. The first-order conditions of (3.6) are given

by

∇f(x)− µX−1e−A(x)y = 0 and c(x) = 0. (3.7)

Applying Newton’s method to this system of equations results in the following linear system:

[

Hk + µX−2

k −Ak

AT
k 0

](

∆x

∆y

)

= −

(

gk − µX−1

k e−Akyk

ck

)

.
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Introducing first-order multiplier estimates Z(xk) := µX−1

k , which can be written as Z(xk)Xk =

µe, we obtain the system

[

Hk + Z(xk)X
−1

k −Ak

Ak 0

](

∆x

∆y

)

= −

(

gk − µX−1

k e−Akyk

ck

)

,

which is equivalent to the primal-dual Newton system (3.5), where we have eliminated

∆z = −X−1Z∆x− Ze− µX−1e.

Thus, the main difference between classical barrier methods and the primal-dual IPMs is that Zk

is not free for barrier methods but is chosen as the primal multiplier Z(xk) = µX−1

k . This freedom

in the primal-dual method avoids some difficulties with ill-conditioning of the barrier Hessian.

Convergence of Barrier Methods. If there exists a compact set of isolated local minimizers of

(1.1) with at least one point in the closure of the strictly feasible set, then it follows that barrier

methods converge to a local minimum (Wright, 1992).

4 Globalization Strategy: Convergence from Remote Starting Points

The approximate subproblems of the preceding section guarantee convergence only in a small

neighborhood of a regular solution. Globalization strategies are concerned with ensuring conver-

gence from remote starting points to stationary points (and should not be confused with global

optimization). To ensure convergence from remote starting points, we must monitor the progress

of the iterates generated by the approximate subproblem. Monitoring is easily done in uncon-

strained optimization, where we can measure progress by comparing objective values. In con-

strained optimization, however, we must take the constraint violation into account. Three broad

classes of strategies exist: augmented Lagrangian methods, penalty and merit-function methods,

and filter and funnel methods.

4.1 Augmented Lagrangian Methods

The augmented Lagrangian of (1.1) is given by

L(x, y, ρ) = f(x)− yT c(x) +
ρ

2
‖c(x)‖22, (4.1)

where ρ > 0 is the penalty parameter. The augmented Lagrangian is used in twomodes to develop

algorithms for solving (1.1): by defining a linearly constrained problem or by defining a bound

constrained problem.
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Linearly Constrained Lagrangian Methods. These methods successively minimize a shifted

augmented Lagrangian subject to a linearization of the constraints. The shifted augmented La-

grangian is defined as

L(x, y, ρ) = f(x)− yT pk(x) +
ρ

2
‖pk(x)‖

2
2, (4.2)

where pk(x) are the higher-order nonlinear terms at the current iterate xk, that is,

pk(x) = c(x)− ck −AT
k (x− xk). (4.3)

This approach results in the following approximate subproblem:

minimize
x

L(x, yk, ρk) subject to ck +AT
k (x− xk) = 0, x ≥ 0. (4.4)

We note that if ck +AT
k (x− xk) = 0, then minimizing the shifted augmented Lagrangian is equiv-

alent to minimizing the Lagrangian over these constraints. Linearly constrained, augmented La-

grangian methods solve a sequence of problems (4.4) for a fixed penalty parameter. Multipliers

are updated by using a first-order multiplier update rule,

yk+1 = yk − ρkc(xk+1), (4.5)

where xk+1 solves (4.4). We observe, that augmented Lagrangian methods iterate on the dual

variables, unlike the active-set, or interior-point methods of the previous sections.

Bound-Constrained Lagrangian Methods. These methods approximately minimize the aug-

mented Lagrangian,

minimize
x

L(x, yk, ρk) subject to x ≥ 0. (4.6)

The advantage of this approach is that efficient methods for bound-constrained optimization

can readily be applied, such as the gradient-projection conjugate-gradient approach (Moré and

Toraldo, 1991), which can be interpreted as an approximate Newton method on the active in-

equality constraints.

Global convergence is promoted by defining two forcing sequences, ωk ց 0, controlling the ac-

curacy with which every bound-constrained problems is solved, and ηk ց 0, controlling progress

toward feasibility of the nonlinear constraints. A typical bound-constrained Lagrangian method

can then be stated as follows:
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Given an initial solution estimate (x0, y0), and an initial penalty parameter ρ0.

repeat
Set xk,0 = xk, ρk,0 = ρk, l = 0, and success = false.

repeat
Find an ωk-optimal solution xk,l+1 of minimizex L(x, yk, ρk,l) s.t. x ≥ 0

if ‖c(xk,l+1)‖ ≤ ηk then
Perform a first-order multiplier update: yk+1 = yk − ρk,lc(xk,l+1).

Set ρk+1 = ρk,l, and success = true.

else
Increase penalty: ρk,l+1 = 10ρk,l; set l = l + 1.

end

until success = true ;

Set xk+1 + xk,l+1, and k = k + 1.

until xk, yk is optimal ;

Algorithm 3: Bound-Constrained Augmented Lagrangian Method.

We note that the inner loop in Algorithm 3 updates the penalty parameter until it is sufficiently

large to force progress towards feasibility, at which point the multipliers are updated. Each mini-

mization can be started from the previous iterate, xk,l.

Theory of Augmented Lagrangian Methods. Conn et al. (1991) show that a bound-constrained

Lagrangian method converges globally if the sequence {xk} of iterates is bounded and if the Ja-

cobian of the constraints at all limit points of {xk} has column rank no smaller than m. Conn

et al. (1991) also show that if some additional conditions are met, then their algorithm is R-linearly

convergent. Bertsekas (1996) shows that the method converges Q-linearly if {ρk} is bounded,

and superlinearly otherwise. Linearly constrained augmented Lagrangian methods can be made

globally convergent by adding slack variables to handle infeasible subproblems (Friedlander and

Saunders, 2005).

4.2 Penalty and Merit Function Methods

Penalty and merit functions combine the objective function and a measure of the constraint viola-

tion into a single function whose local minimizers correspond to local minimizers of the original

problem (1.1). Convergence from remote starting points can then be ensured by forcing descent of

the penalty or merit function, using one of the mechanisms of the next section.

Exact penalty functions are an attractive alternative to augmented Lagrangians and are defined

as

pρ(x) = f(x) + ρ‖c(x)‖,

where ρ > 0 is the penalty parameter. Most approaches use the ℓ1 norm to define the penalty

function. It can be shown that a local minimizer, x∗, of pρ(x) is a local minimizer of problem (1.1)

if ρ > ‖y∗‖D, where y∗ are the corresponding Lagrange multipliers and ‖ · ‖D is the dual norm of
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‖·‖ (i.e., the ℓ∞-norm in the case of the ℓ1 exact-penalty function); see, for example, (Fletcher, 1987,

Chapter 12.3). Classical approaches using pρ(x) have solved a sequence of penalty problems for

an increasing sequence of penalty parameters. Modern approaches attempt to steer the penalty

parameter by comparing the predicted decrease in the constraint violation to the actual decrease

over a step (Byrd et al., 2008).

A number of other merit functions also exist. The oldest, the quadratic penalty function, f(x)+

ρ‖c(x)‖22, converges only if the penalty parameter diverges to infinity. Augmented Lagrangian

functions and Lagrangian penalty functions such as f(x) + yT c(x) + ρ‖c(x)‖ have also been used

to promote global convergence. A key ingredient in any convergence analysis is to connect the

approximate subproblem to the merit function that is being used in a way that ensures a descent

property of the merit function; see Section 5.1.

4.3 Filter and Funnel Methods

Filter and funnel methods provide an alternative to penalty methods that does not rely on the use

of a penalty parameter. Both methods use step acceptance strategies that are closer to the original

problem, by separating the constraints and the objective function.

Filter Methods. Filter methods keep a record of the constraint violation, hl := ‖c(xl)‖, and objec-

tive function value, fl := f(xl), for some previous iterates, xl, l ∈ Fk (Fletcher and Leyffer, 2002).

A new point is acceptable if it improves either the objective function or the constraint violation

compared to all previous iterates. That is, x̂ is acceptable if

f(x̂) ≤ fl − γhl or h(x̂) ≤ βhl, ∀l ∈ Fk,

where γ > 0, 0 < β < 1, are constants that ensure that iterates cannot accumulate at infeasible limit

points. A typical filter is shown in Figure 1 (left), where the straight lines correspond to the region

in the (h, f)-plane that is dominated by previous iterations and the dashed lines correspond to the

envelope defined by γ, β.

The filter provides convergence only to a feasible limit because any infinite sequence of iterates

must converge to a point, where h(x) = 0, provided that f(x) is bounded below. To ensure

convergence to a local minimum, filter methods use a standard sufficient reduction condition

from unconstrained optimization,

f(xk)− f(xk + d) ≥ −σmk(d), (4.7)

where σ > 0 is the fraction of predicted decrease and mk(d) is the model reduction from the

approximate subproblem. It makes sense to enforce this condition only if the model predicts a

decrease in the objective function. Thus, filter methods use the switching condition mk(d) ≥ γh2k
to decide when (4.7) should be enforced. A new iterate that satisfies both conditions is called an

f-type iterate, and an iterate for which the switching condition fails is called an h-type iterate to

indicate that it mostly reduces the constraint violation. If a new point is accepted, then it is added
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to the current iterate to the filter, Fk, if hk > 0 or if it corresponds to an h-type iterations (which

automatically satisfy hk > 0).

Funnel Methods. The method of Gould and Toint (2010) can be viewed as a filter method with

just a single filter entry, corresponding to an upper bound on the constraint violation. Thus, the

filter contains only a single entry, (Uk,−∞). The upper bound is reduced during h-type iterations,

to force the iterates toward feasibility; it is left unchanged during f-type iterations. Thus, it is pos-

sible to converge without reducing Uk to zero (consistent with the observation that SQP methods

converge locally). A schematic interpretation of the funnel is given in Figure 1 (right).

Figure 1: The left figure shows a filter where the blue/red area corresponds to the points that are

rejected by the filter. The right figure shows a funnel around the feasible set.

4.4 Maratos Effect and Loss of Fast Convergence

One can construct simple examples showing that arbitrarily close to an isolated strict local min-

imizer, the Newton step will be rejected by the exact penalty function (Maratos, 1978), resulting

in slow convergence. This phenomenon is known as the Maratos effect. It can be mitigated by

computing a second-order correction step, which is a Newton step that uses the same linear sys-

tem with an updated right-hand side (Fletcher, 1987; Nocedal and Wright, 1999). An alternative

method to avoid the Maratos effect is the use of nonmonotone techniques that require descent

over only the lastM iterates, where M > 1 is a constant.

5 Globalization Mechanisms

In this section, we review twomechanisms to reduce the step that is computed by the approximate

subproblem: line-searchmethods and trust-regionmethods. Both mechanisms can be used in con-

junction with any of the approximate subproblems and any of the global convergence strategies,

giving rise to a broad family of algorithms. In Sections ??–??, we describe how these components

are used in software for NCOs.
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5.1 Line-Search Methods

Line-search methods enforce convergence with a backtracking line search along the direction s.

For interior-point methods, the search direction, s = (∆x,∆y,∆z), is obtained by solving the

primal-dual system (3.5). For SQPmethods, the search direction is the solution of the QP (3.1), s =

d. It is important to ensure that the model produces a descent direction, e.g., ∇Φ(xk)
T s < 0 for a

merit or penalty functionΦ(x); otherwise, the line searchmay not terminate. A popular line search

is the Armijo search (Nocedal and Wright, 1999), described in Algorithm 4 for a merit function

Φ(x). The algorithm can be shown to converge to a stationary point, detect unboundedness, or

converge to a point where there are no directions of descent.

Given initial estimate x0 ∈ IRn, let 0 < σ < 1, and set k = 0;

while xk is not optimal do
Approximately solve an approximate subproblem of (1.1) around xk to find a search

direction s.

Make sure that s is a descent direction, e.g. ∇Φ(xk)
T s < 0.

Set α0 = 1 and l = 0.

repeat

Set αl+1 = αl/2 and evaluate Φ(xk + αl+1s). Set l = l + 1.

until Φ(xk + αls) ≤ fk + αlσsT∇Φk ;

set k = k + 1.
end

Algorithm 4: (Armijo) Line-Search Method for Nonlinear Optimization

Line-search methods for filters can be defined in a similar way. Instead of checking descent in

the merit function, a filter method is used to check acceptance to a filter. Unlike merit functions,

filter methods do not have a simple definition of descent; hence, the line search is terminated

unsuccessfully once the step size αl becomes smaller than a constant. In this case, filter methods

switch to a restoration step, obtained by solving a local approximation of (2.2).

5.2 Trust-Region Methods

Trust-region methods explicitly restrict the step that is computed by the approximate subproblem,

by adding a trust-region constraint of the form ‖d‖ ≤ ∆k to the approximate subproblem. Most

methods use an ℓ∞-norm trust region, which can be represented by bounds on the variables. The

trust-region radius,∆k > 0, is adjusted at every iteration depending on howwell the approximate

subproblem agrees with the NCO, (1.1).
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Given initial estimate x0 ∈ IRn, choose ∆0 ≥ ∆ > 0, and set k = 0;

repeat
Reset∆k,l := ∆k ≥ ∆ > 0; set success = false, and l = 0.

repeat
Solve an approximate subproblem in a trust-region, e.g. (3.1) with ‖d‖ ≤ ∆k,l.

if xk + d is sufficiently better than xk then
Accept the step: xk+1 = xk + d; possibly increase∆k,l+1; set success = true.

else
Reject the step and decrease the trust-region radius, e.g. ∆k,l+1 = ∆k,l/2.

end

until success = true ;

Set k = k + 1.
until xk is optimal ;

Algorithm 5: Trust-Region Methods for Nonlinear Optimization

Step acceptance in this algorithm can be based either on filter methods, or on sufficient de-

crease in a merit or penalty function, see Algorithm 4. Trust-region methods are related to regu-

larization techniques, which add amultiple of the identity matrix, σkI , to the Hessian,Hk. Locally,

the solution of the regularized problem is equivalent to the solution of a trust-region problemwith

an ℓ2 trust-region. One disadvantage of trust-region methods is the fact that the subproblem may

become inconsistent as ∆k,l → 0. This situation can be dealt with in three different ways: (1) a

penalty function approach, (2) a restoration phase in which the algorithmminimizes the constraint

violation (Fletcher and Leyffer, 2003), or (3) a composite step approach, e.g. (Omojokun, 1989).
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